Run EPM with Python - Summary#
First, navigate to the epm
directory.
Example: Specify the input folder, enable sensitivity analysis, and use 4 CPU cores for parallel execution.
python epm.py --folder_input data_test_region --sensitivity --cpu 4
Other command-line options allow for further customization of the simulation run, such as specifying scenarios, enabling Monte Carlo analysis, and more.
General Configuration#
Argument |
Type |
Default |
Description |
Example Usage |
---|---|---|---|---|
|
string |
|
Path to the global configuration CSV file |
|
|
string |
|
Folder containing input data files |
|
Execution Control#
Argument |
Type |
Default |
Description |
Example Usage |
---|---|---|---|---|
|
list[str] |
[‘DiscreteCap’, ‘y’] |
List of simplified parameters. |
|
|
integer |
1 |
Number of CPU cores to use |
|
Postprocessing Options#
Argument |
Type |
Default |
Description |
Example Usage |
---|---|---|---|---|
|
string |
None |
Only run postprocessing on specified output folder |
|
|
list[str] |
|
Select scenarios to plot |
|
|
flag |
False |
Disable automatic dispatch plots |
|
|
string |
|
Folder to save postprocessing graphs |
|
|
flag |
False |
Enable reduced output mode |
|
Scenario & Sensitivity Analysis#
Argument |
Type |
Default |
Description |
Example Usage |
---|---|---|---|---|
|
string |
None |
CSV file defining multiple scenarios |
|
|
list[str] |
None |
List of scenario names to run |
|
|
flag |
False |
Enable sensitivity analysis |
|
|
list[str] |
None |
Project(s) to exclude in counterfactual analysis |
|
Monte Carlo Settings#
Argument |
Type |
Default |
Description |
Example Usage |
---|---|---|---|---|
|
flag |
False |
Enable Monte Carlo uncertainty analysis |
|
|
integer |
10 |
Number of samples to generate |
|
|
string |
None |
CSV file defining uncertainty parameters |
|