Run EPM with Python - Summary#

First, navigate to the epm directory.

Example: Specify the input folder, enable sensitivity analysis, and use 4 CPU cores for parallel execution.

python epm.py --folder_input data_test_region --sensitivity --cpu 4

Other command-line options allow for further customization of the simulation run, such as specifying scenarios, enabling Monte Carlo analysis, and more.

General Configuration#

Argument

Type

Default

Description

Example Usage

--config

string

input/config.csv

Path to the global configuration CSV file

--config input/my_config.csv

--folder_input

string

data_test

Folder containing input data files

--folder_input data_test_region


Execution Control#

Argument

Type

Default

Description

Example Usage

--simple

list[str]

[‘DiscreteCap’, ‘y’]

List of simplified parameters. DiscreteCap remove discrete constraint, yonly runs for first and last year.

--simple DiscreteCap y

--cpu

integer

1

Number of CPU cores to use

--cpu 4


Postprocessing Options#

Argument

Type

Default

Description

Example Usage

--postprocess

string

None

Only run postprocessing on specified output folder

--postprocess simulations_run_2024-10-01

--plot_selected_scenarios

list[str]

"all"

Select scenarios to plot

--plot_selected_scenarios baseline

--no_plot_dispatch

flag

False

Disable automatic dispatch plots

--no_plot_dispatch

--graphs_folder

string

img

Folder to save postprocessing graphs

--graphs_folder figures

--reduced_output

flag

False

Enable reduced output mode

--reduced_output


Scenario & Sensitivity Analysis#

Argument

Type

Default

Description

Example Usage

--scenarios

string

None

CSV file defining multiple scenarios

--scenarios input/scenarios.csv

--selected_scenarios

list[str]

None

List of scenario names to run

--selected_scenarios baseline HighDemand

--sensitivity

flag

False

Enable sensitivity analysis

--sensitivity

--project_assessment

list[str]

None

Project(s) to exclude in counterfactual analysis

--project_assessment SolarProject


Monte Carlo Settings#

Argument

Type

Default

Description

Example Usage

--montecarlo

flag

False

Enable Monte Carlo uncertainty analysis

--montecarlo

--montecarlo_samples

integer

10

Number of samples to generate

--montecarlo_samples 20

--uncertainties

string

None

CSV file defining uncertainty parameters

--uncertainties input/uncertainties.csv