Data Preparation Workflow Documentation#

This document details the data preparation workflow for energy modeling using various Jupyter notebooks. It covers climatic data analysis, renewable energy profiles, generation datasets, load profiles, representative days, and hydropower data integration.


Summary Table#

Step

Notebook

Key Inputs

Key Outputs

1

zcmap.csv

List of countries/zones

Perimeter definition

2

pre-analysis/climatic/climatic_overview.ipynb

zcmap.csv

Climate overview plots

3

climatic/get_renewables_irena_data.ipynb

List of countries (SPLAT names)

Renewable profiles (solar, wind)

3

climatic/get_renewables_ninja_data.ipynb

Coordinates from generation/get_renewables_coordinates.ipynb

Renewable profiles (solar, wind)

3

generation/get_renewables_coordinates.ipynb

Country names or zones

Coordinates for Renewable Ninja

4

global_database_overview.ipynb

None

Generation project map, aggregated data

5

load/treat_load_profile.ipynb

Existing load data

Smoothed load profiles

5

load/generate_load_profile.ipynb

Hourly load shapes, monthly means

Synthetic load profiles

6

representative_days.ipynb

Climate and load profiles

pHours.csv, load/pDemandProfile.csv, supply/pVREProfile.csv

7

hydro_capacity_factor.ipynb

IRENA hydropower atlas, supply/pGenDatExcel.csv

Monthly hydro capacity factors

7

hydro_basins_map.ipynb

Basin shapefiles

Hydro basin maps

7

hydro_inflow_analysis.ipynb

GRDC inflow data

Inflow analysis

7

hydro_atlas_comparison.ipynb

Utility data, IRENA atlas

Atlas comparison plots


1. Define Perimeter Countries/Zones#

  • Define the perimeter of countries or zones to study.

  • Fill the file: zcmap.csv

  • This file should include the names of countries/zones used throughout the analysis.


2. Run Climatic Overview#

Notebook: `pre-analysis/climatic/climatic_overview.ipynb``

  • Objective: Understand precipitation and temperature patterns to determine representative seasons.

  • Input: List of countries/zones from zcmap.csv.

  • Output: Climate overview plots.

Temperature & Precipitation Monthly Precipitation


3. Get Solar and Wind Information#

Option 1 — IRENA Data#

Notebook: climatic/get_renewables_irena_data.ipynb

  • Recommended for obtaining solar and wind profiles.

  • Input: List of countries using SPLAT model names.

  • Output:

    • Hourly renewable profiles by zone and season.

    • Files structured with columns:

      zone, season, day, hour, <climatic_year>
      

Example outputs (images stored in dwld folder):

LCOE Solar

Wind Heatmap

LCOE Solar

Heatmap


Option 2 — Renewable Ninja Data#

Notebook: `climatic/get_renewables_ninja_data.ipynb``

  • Alternative source for solar and wind profiles.

  • Requires geographical coordinates from:

Notebook: `generation/get_renewables_coordinates.ipynb``

  • Outputs follow the same format:

    zone, season, day, hour, <climatic_year>
    

4. Make Generation List#

Notebook: generation/global_database_overview.ipynb

  • Purpose: Compare aggregated results by technology or fuel.

  • Goal: Create the EPM input file: `supply/pGenDatExcel.csv``

  • Generates:

  • Aggregated data summaries.

  • Map of generation projects.

Example map output:

Open Power Map


5. Generate Load Profile#

Two approaches:

5.1 Smooth Existing Load Data#

Notebook: load/treat_load_profile.ipynb

  • Input: Actual load data.

  • Output: Smoothed load profiles.

5.2 Generate Synthetic Load Profile#

Notebook: load/generate_load_profile.ipynb

  • Input:

    • Hourly load profile shapes.

    • Monthly mean values.

  • Output: Synthetic hourly load profiles.


6. Generate Representative Days#

Notebook: representative_days/epresentative_days.ipynb

  • Uses:

    • Season definitions.

    • Data created in steps 2 and 4.

  • Output:

    • pHours.csv

    • load/pDemandProfile.csv

    • supply/pVREProfile.csv

These files are in EPM format and ready for model integration.


7. Hydro Data Preparation#

7.1 Monthly Capacity Factor#

Notebook: hydro_capacity_factor.ipynb

  • Input:

    • IRENA African Hydropower Atlas:

      IRENA African_Hydropower_Atlas.xlsx
      
    • Matching plant names from:

      supply/pGenDatExcel.csv
      
  • Output:

    • Monthly hydro capacity factors.


7.2 Hydro Basin Mapping#

Notebook: hydro_basins_map.ipynb

  • Output: Map visualizations of hydro basins.


7.3 Advanced Hydro Analyses#

Hydro Inflow Analysis#

Notebook: hydro_inflow_analysis.ipynb

  • Analyzes GRDC inflow data for climate change studies.


Hydro Atlas Comparison#

Notebook:hydro_atlas_comparison.ipynb

  • Compares utility data with IRENA hydropower atlas.


Notes#

  • Always ensure consistency in naming conventions for zones/countries across all files.

  • All renewable output formats are standardized to facilitate integration into the SPLAT or EPM models.